

The impact of our changing climate on urban areas

Dr Emma Ferranti e.ferranti@bham.ac.uk

The CAT (climate action tracker) thermometer

Policies & action Real world action based on current policies †

2030 targets only Based on 2030 NDC targets* †

Pledges & targets Based on 2030 NDC targets* and submitted and binding long-term targets

Optimistic scenario

Best case scenario and assumes full implementation of all **announced** targets including net zero targets, LTSs and NDCs*

† Temperatures continue to rise after 2100

* If 2030 NDC targets are weaker than projected emissions levels under policies & action, we use levels from policy & action

CAT warming projections **Global temperature increase by 2100**

November 2022 Update

Source: https://climateactiontracker.org/global/temperatures/

Future greenhouse gas emissions

2030 EMISSIONS GAPS

1. We must mitigate 1. (reduce emissions). Most dangerous impacts of climate change happen above 1.5°C 2. We must adapt (be ready for a different future climate). 3. When using future scenarios need to consider 3°C (or

more) warming.

Source:

https://climateactiontracker.org/global/temperatures/

Met Office State of the UK Climate in 2019

Source: https://www.rmets.org/news/report-shows-climate-change-exerting-increasing-influence-uk-climate

Future climate projections

- Met Office 2018 headline result: "a greater chance of warmer, wetter winters and hotter, drier summers"
 - More frequent heavy rainfall events, more rainfall in shorter period of time
 - Summers like 2018 happening every other year by 2050
 - Sea level rise (e.g. 70-115 cm (low vs high emissions) by 2100
 - We can influence the future!

Chance of exceeding Summer 2018 temperature

Source Met Office:

https://www.metoffice.gov.uk/binaries/content/as sets/metofficegovuk/pdf/research/ukcp/ukcp18overview-slidepack-march21.pdf

So what does this mean for our urban areas?

Increased future flood risk (pluvial, fluvial, coastal)

"The risk of flooding to people, communities and buildings is one of the most severe risks from climate hazards for the UK population – both now and in the future" CCRA 2021

Increased future overheating risk

"There is still little preventative action being taken to address health risks from overheating in buildings. In England, ~20% homes risk of overheating" CCRA 2021

Source: GETTY IMAGES https://www.bbc.co.uk/news/uk-englandshropshire-59401743

Flooding : importance of permeable surfaces

Source: http://thebritishgeographer.weebly.com/hydrographs-recurrenceintervals-and-drainage-basin-responses.html

- Greenspace has declined from 63-55% from 2001- 2018
- Impermeable surfaces increased by 22% since 2001

Source: CCC, 2019 Progress Report to Parliament

https://www.theccc.org.uk/wp-content/uploads/2019/07/CCC2019-Progress-inpreparing-for-climate-change.pdf

First Steps in Urban Water manging water as a resource

TDAG Seminar 15th Nov 2-4pm: <u>https://www.tdag.org.uk/</u> First Steps in Urban Water: <u>http://epapers.bham.ac.uk/4284/</u>

First Steps in Urban Water

Key elements 1. Treat water as a resource

Value water: minimise use of potable water by appropriate use of rainwater and filtered and treated greywater.

2. Small changes have a large effect

The cumulative effects of multiple smallscale interventions can be substantial.

3. Integrated water management

Link water management with urban heat reduction, flood risk management and greenspace provision, using valuation tools²⁷ to maximise societal benefit. Include all key players early – design teams, utilities, planners, highway engineers, local communities, and other stakeholders.

4. Use trees wherever possible

Trees improve the performance of GI²⁸ and deliver a wealth of social, environmental and economics benefits¹².

5. Use of mapping and modelling

Make use of geographic information systems and hydraulic modelling software to help assess the most suitable interventions.

6. Design with maintenance in mind

Have a maintenance plan in place before supervised construction starts. Include regular inspections, components and how they work, identified disposal sites, action plan for accidental spills, and advice on how to undertake excavations (eg utilities). Co-design with relevant maintenance regimes where appropriate (eg soft landscape management).

7. Plan for SuDS adoption²⁹

Water companies have the capacity to adopt SuDS that are predominantly used for drainage from buildings or their paved areas, provided they are designed according to their guidance³⁰.

Table 2 Ensuring water management interventions are appropriate and effective

Intervention	Planning considerations	Delivery	Management	Case studies
All SuDS options 31, 32	 Suitability of area: Topography, geology, groundwater flows. Discharge locations, bypass system for use while cleaning, disposal areas of organic arisings. How they fit into wider design – amenity and biodiversity. Mainteannee plan. 	 Use skilled and experienced contractors, following government guidelinesth. 	Clearing of Inlets and outlets. Vegetation management. Littler picking. Checks and maintenance of components.	Link
Tree planting pits ^{33,34}	- Type of system, eg structural solis, rafted, crated, - Underground services. - Tree species: right tree right place. Order well ahead of time. - Irrigation system design. - Use of mulch to reduce evaporation.	 Adequate quantity and quality of growing media. Timing of planting – autum/ winter best for rainfall. Ensure contractors have adequate environmental awareness (ISO 9001 certification). 	- Irrigation of trees. - Pruning regime. - Tree safety inspections.	Link
Permeable paving ^{35,36}	 System type: Total, partial or no infiltration. Steepness of land. Underground services. Contaminated sites, designed not to drain water into water table. Porosity of underlying soil. 	 Use of type 3 sub-base. Use of skilled and experience contractors⁸⁷. 	 Suction sweeping. Manual weed removal/weed burner (avoid weed killers as they may enter groundwater). Permeable asphalt requires pressure wash or flushing every quarter. 	<u>Link</u> Link
Swales, infiltration basins and rain gardens ^{52,36}	 Soil permeability. Connection to and from other features. Catchment area - size needed. Steepness of slopes. 	 Integrate into surrounding landscape. Use of appropriate planting - consider biodiversity, and visibility constraints if near highway. 	 Grass cutting (less often if managed as meadow). Litter picking. Inspection of components. Remove silts¹⁰ - wildlife piles or compost. 	Link Link
Rainwater harvesting	 Sizing of tank using rainwater figures against usage. Connect overflow to other systems. 	 Mesh/filters to stop insects and debris. 	– Empty before heavy rainfall. – Clean mesh/filters.	Link
Green roofs and walls ³⁹	 Intensive vs extensive. Overflow routes. Irrigation system design. 	 Appropriate planting for substrate and biodiversity. Skilled and experienced contractors. 	 Irrigation of plants and general plant maintenance. Checks and maintenance of components. 	Link Link Link
Designing for exceedance ²³	 Identify the flood pathways, incorporate them into emergency management plans. Public awareness of pathways. 	 Can alter pathways with groundworks. Ensure subsequent works do not block designed pathways. 	 Monitoring waterflow during storm events against assumed water pathways. Keep pathways clear. 	Link

TDAG Seminar 15th Nov 2-4pm: <u>https://www.tdag.org.uk/</u> First Steps in Urban Water: <u>http://epapers.bham.ac.uk/4284/</u>

Increased hot days, max temperatures, & heatwave frequency increase overheating risk

Overheating determined by (CCRA 2021)

- Outdoor temperature (sky view factor, green space)
- Indoor temperature (building factors, function)
- Individual vulnerability factors
- > Increased risk of overheating in flats & energy efficient dwellings
- > Most vulnerable disproportionately impacted

Older people, pre-existing poor health – care homes, prisons, inequalities in ability to adapt

First Steps in Urban Heat http://epapers.bham.ac.uk/3452/

Increased hot days, max temperatures, & heatwave frequency increase overheating risk

What can practitioners do?

- 1. Understand the urban heat island intensity where is hottest?
- Heat sensitive strategic planning locate homes away from hottest areas
- Consider site design and materials
 sky view factor, green infrastructure, cooling materials
- 4. Assess building overheating risk
- 5. It is never too late to mitigate.

First Steps in Urban Heat http://epapers.bham.ac.uk/3452/

We must adapt for urban heat & flooding

- Early action saves future costs and prevents maladaptation
- Active transport can be part of adaption (e.g. align with SUDs schemes, greenery for rainfall interception, shade and evapotranspiration) but must also be adapted
- Public transport is only resilient when the surrounding neighbourhood is resilient

A perspective from Rio de Janeiro, Brazil

BBC:

Climate Risk and Vulnerability Assessment

MAPPING CLIMATE RISK AND VULNERABILITY WITH PUBLICLY AVAILABLE DATA

UNIVERSITYOF

BIRMINGHAM

Several factors affect climate risk. What these are and the extent of their influence varies from place to place. Therefore, climate action is needed on all fronts: "everything, everywhere, all at once,"1

Built on Environmental Justice Map & heat vulnerability map to develop a CRVA map

City Council

Produced with city GIS team

WM-AIR

- Being trialled with City Planning and Design Team
- Data and map embedded within city GIS processes
- Map available on city webpage
- Map used for Carbon Disclosure Project (CPD) reporting by the city
- Open access methodology and data

Climate Risk and Vulnerability Assessment

Layer	Data type	
Fluvial flood risk (Flood zones 2 & 3) ^{7,8}	Physical	
Pluvial flood risk (3.3 year return period) ⁹	Physical	
Open green space deficit ¹⁰	Physical	
Other green space deficit ¹¹	Physical	
Tree canopy cover deficit ¹²	Physical	
Local climate zones ¹³	Physical	
Annual nitrogen dioxide (NO ₂) concentration ¹⁴	Environmental	
Annual fine particulate (PM _{2.5}) concentration ¹⁴	Environmental	
Surface temperature (summer daily max) ¹⁵	Environmental	
Indices of Multiple Deprivation (IMD) ¹⁶	Social	
Excess years life lost ¹⁷	Social	

Greenham et al., 2023 http://epapers.bham.ac.uk/4259/

Climate Risk and Vulnerability Assessment

Policy Guide for Transport Resilience

UKaid

References

- Ferranti, E.; Cook, S.; Greenham, S.V.; Grayson, N.; Futcher, J.; Salter, K. Incorporating Heat Vulnerability into Local Authority Decision Making: An Open Access Approach. Sustainability 2023, 15, 13501. <u>https://doi.org/10.3390/su151813501</u>
- Ferranti, E.J.S., Futcher, J. Salter, K. Hodgkinson, S. and Chapman, L. 2021. First Steps in Urban Heat. A Trees and Design Action Group (TDAG) Guidance Document. UK: London. https://doi.org/10.25500/epapers.bham.00003452
- Greenham, S., Workman, R., Ferranti, E., McPherson, K., Quinn, A., Street, R., Dora, J., Fisher, R., Mills, S., Packham, K., Baxter, W., Roberts, C. 2022.
 Climate-Resilient Transport: A policy guide for low-income countries in Africa and South Asia. Prepared by the University of Birmingham and TRL, UK.
 February 2022. https://transport-links.com/download/climate-resilient-transport-a-policy-guide/
- Greenham, S., Ferranti, E., Workman, R., McPherson, K., Quinn, A., Fisher, R., Mills, S., Street, R., Packham, K., Baxter, W., Dora, J., 2022. Adaptation for Transport Resilience to Climate Change for LICs in Africa and South Asia: State of Knowledge Report. Prepared by the University of Birmingham and TRL, UK.January 2022 https://transport-links.com/download/state-of-knowledge-report-adaptation-for-transport-resilience-to-climate-change-aftr-cc-for-lics-inafrica-and-south-asia/
- Greenham, S., Workman, R., McPherson, K. Ferranti, E., et al. 2023. Are transport networks in low-income countries prepared for climate change? Barriers to preparing for climate change in Africa and South Asia. Mitig Adapt Strateg Glob Change 28, 44 https://doi.org/10.1007/s11027-023-10078-1
- Greenham, S., Ferranti, E., Powell, R., Drayson, K. and Quinn, A. (2023), The impact of heat on London Underground infrastructure in a changing climate. Weather, 78: 170-175. <u>https://doi.org/10.1002/wea.4421</u>
- Greenham, SV., Jones, SA., Ferranti, EJS., Acton, WJF., MacKenzie, AR., Grayson, N., 2023. Mapping climate risk and vulnerability with publicly available data. A guidance document produced by the WM-Air project, University of Birmingham. http://epapers.bham.ac.uk/4259/
- Kovats, S. and Brisley, R. (2021) Health, communities and the built environment. In: The Third UK Climate Change Risk Assessment Technical Report[Betts, R.A., Haward, A.B., Pearson, K.V. (eds.)]. Prepared for the Climate Change Committee, London. https://www.ukclimaterisk.org/wpcontent/uploads/2021/06/CCRA3-Chapter-5-FINAL.pdf
- Sayers, P. B., Horritt, M. S., Carr, S., Kay, A., Mauz, J., Lamb, R., & Penning-Rowsell, E. (2020a) Third UK Climate Change Risk Assessment (CCRA3) Future flood risk - Main Report. Retrieved from London, UK: <u>https://www.ukclimaterisk.org/wp-content/uploads/2020/07/Future-FloodingMain-Report-Sayers-1.pdf</u>
- Stevens, P.J. and Stevens, A.J. Ferranti, Emma and Sharifi, S and James, Sue (2023) First Steps in Urban Water. Technical Report. University of Birmingham & TDAG. http://epapers.bham.ac.uk/4284/

